Share Email Print
cover

Proceedings Paper

Common deep level in GaN
Author(s): Tzu-Chi Wen; Shih-Chang Lee; Wei-I Lee; Jen-Da Guo; Ming Shiann Feng
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A deep level with the activation energy around 0.45-0.6 eV has persistently appeared in GaN samples grown by hydride vapor-phase epitaxy, organometallic vapor-phase epitaxy and molecular beam epitaxy. However, the origin of this deep level still remains unclear. In this study, we investigated this deep level trap E2 of GaN films by using deep level transient spectroscopy. The GaN films were grown by a conventional low pressure organometallic vapor-phase epitaxy technique with different V/III ratios. Frequency-dependent capacitance measurement was performed to determine the most proper frequency for capacitance measurements. Capacitance- voltage measurements were then applied to obtain the carrier concentrations. The carrier concentration became higher as the flow rate of NH3 got lower. The deep level E2 is found in GaN samples grown with higher V/III ratios. The trap concentration of level E2 increased with increasing NH3 flow rate. Compared with the theoretical prediction of the nitrogen antisite level in GaN, the level E2 was believed to be related to nitrogen antisites.

Paper Details

Date Published: 9 November 1999
PDF: 6 pages
Proc. SPIE 3899, Photonics Technology into the 21st Century: Semiconductors, Microstructures, and Nanostructures, (9 November 1999); doi: 10.1117/12.369421
Show Author Affiliations
Tzu-Chi Wen, National Chiao Tung Univ. (Taiwan)
Shih-Chang Lee, National Chiao Tung Univ. (Taiwan)
Wei-I Lee, National Chiao Tung Univ. (Taiwan)
Jen-Da Guo, National Chiao Tung Univ. (Taiwan)
Ming Shiann Feng, National Chiao Tung Univ. (Taiwan)


Published in SPIE Proceedings Vol. 3899:
Photonics Technology into the 21st Century: Semiconductors, Microstructures, and Nanostructures
Seng Tiong Ho; Yan Zhou; Weng W. Chow; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top