Share Email Print
cover

Proceedings Paper

NIF small mirror mounts
Author(s): Tom J. McCarville
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The most prominent physical characteristics of the 192-beam NIF laser are the 123 m length of the main laser and 400 mm aperture of each beam line. The main laser is illustrated in Figure 1, which shows half the total beam lines. Less visible are the many small optics (less than 100-mm diameter) used to align and diagnose each beam line. Commercial mounts can be used for most of the small aperture turning mirrors. This paper reviews the NIF projects effort to identify suitable commercial mirror mounts. The small mirror mounts have stability, wave front, space, and cleanliness requirements similar to the large aperture optics. While cost favors use of commercial mounts, there is little other than user experience to guide the mount qualification process. At present, there is no recognizable qualification standard with which to compare various products. In a large project like NIF, different user experience leads to different product selection. In some cases the differences are justified by application needs, but more often the selection process is somewhat random due to a lack of design standards. The result is redundant design and testing by project staff and suppliers. Identification of suitable mirror mounts for large projects like NIF would be streamlined if standards for physical and performance criteria were available, reducing cost for both the project and suppliers. Such standards could distinguish mounts for performance critical applications like NIF from laboratory applications, where ease of use and flexibility is important.

Paper Details

Date Published: 11 November 1999
PDF: 6 pages
Proc. SPIE 3782, Optical Manufacturing and Testing III, (11 November 1999); doi: 10.1117/12.369235
Show Author Affiliations
Tom J. McCarville, Lawrence Livermore National Lab. (United States)


Published in SPIE Proceedings Vol. 3782:
Optical Manufacturing and Testing III
H. Philip Stahl, Editor(s)

© SPIE. Terms of Use
Back to Top