Share Email Print

Proceedings Paper

Simulation of circuits demonstrating stochastic resonance
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In certain dynamic systems, the addition of nose can assist the detection of a signal and not degrade it as normally expected. This is possible via a phenomenon termed stochastic resonance (SR). The response of a nonlinear system to a sub-threshold periodic input signal is optimal for some non-zero value of noise intensity. Using the signal-to-noise ratio (SNR) we can characterize SR - as the noise increases the SNR rises sharply, which is followed by a gradual decrease. We investigate the SR phenomenon in several circuits and numerical simulations. In particular, the effect that the system linearity has on the amount of gain introduced by SR and the effect of varying the input signal strength. We demonstrate, for a thresholding system, as much as a 20 dB improvement in SNR, which may be increased by further investigation. Although SR occurs in many disciplines, the sinusoidal signal itself is not information bearing. To greatly enhance the practical applications of SR, we require operation with an aperiodic broadband signal. Hence, we introduce aperiodic stochastic resonance (ASR) where noise can enhance the response of a nonlinear system to a weak aperiodic signal. As the input signal is aperiodic, an alternative quantitative measure is required rather than the SNR used with periodic signals. We can characterize ASR by the use of cross-correlation-based- measures. Using this measure, the ASR in a simple threshold system and in a FitzHugh-Nagumo neuronal model are compared using numerical simulations. Using both weak periodic and aperiodic signal we show that the response of a nonlinear system is enhanced, regardless of the signal.

Paper Details

Date Published: 8 October 1999
PDF: 9 pages
Proc. SPIE 3893, Design, Characterization, and Packaging for MEMS and Microelectronics, (8 October 1999); doi: 10.1117/12.368425
Show Author Affiliations
Gregory P. Harmer, Univ. of Adelaide (Australia)
Derek Abbott, Univ. of Adelaide (Australia)

Published in SPIE Proceedings Vol. 3893:
Design, Characterization, and Packaging for MEMS and Microelectronics
Bernard Courtois; Serge N. Demidenko, Editor(s)

© SPIE. Terms of Use
Back to Top