Share Email Print
cover

Proceedings Paper

Subband-domain signal processing for radar array systems
Author(s): Daniel V. Rabinkin; Nicholas B. Pulsone
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Subband-domain algorithms provide an attractive technique for wideband radar array processing. The subband-domain approach decomposes a received wideband signal into a set of narrowband signals. While the number of processing threads in the system increases, the narrowband signals within each subband can be sampled at a correspondingly slower rate. Therefore, the data rate at the input is similar to that at the output of the subband processor. There are several advantages to the subbanding method. It can simplify typical radar algorithms such as adaptive beamforming and equalization by the virtue of reducing subband signal bandwidth, thereby potentially reducing the computational complexity over an equivalent tapped-delay line approach. It also allows for a greater parallelization of the processing task, hence enabling the use of slower and less power consuming hardware. In order to evaluate the validity of the subbanding approach, it is compared with conventional processing methods. This paper focuses on adaptive beamforming and pulse compression performance for a wideband radar system. The performance of an adaptive beamformer is given for a polyphase filter based subband approach and is measured against narrowband processing. SINR loss curves and beampatterns for a subband system are presented. Design criteria for subband polyphase filter processing that minimizes signal distortion are provided and the distortion is characterized. Finally subband- domain pulse compression is demonstrated and compared with the conventional approach.

Paper Details

Date Published: 2 November 1999
PDF: 14 pages
Proc. SPIE 3807, Advanced Signal Processing Algorithms, Architectures, and Implementations IX, (2 November 1999); doi: 10.1117/12.367634
Show Author Affiliations
Daniel V. Rabinkin, MIT Lincoln Lab. (United States)
Nicholas B. Pulsone, MIT Lincoln Lab. (United States)


Published in SPIE Proceedings Vol. 3807:
Advanced Signal Processing Algorithms, Architectures, and Implementations IX
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top