Share Email Print
cover

Proceedings Paper

Internet video transmission via receiver-based congestion control mechanism (RCCM) and H.263+ frame rate control
Author(s): Young-Gook Kim; Hwangjun Song; Yon Jun Chung; JongWon Kim; C.-C. Jay Kuo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A feedback-based Internet video transmission scheme based on the ITU-T H.263+ is presented. The proposed system is capable of continually adjusting the stream size to avoid the congestion in response to network condition changes. It consists of several major components such as TCP-friendly end- to-end congestion control with available bandwidth estimation, encoding frame rate control and transmission buffer smoothing at the server. These components are designed to meet the low computational complexity requirement so that the whole system can operate in real time. Among these, video-aware congestion control, which is called the receiver-based congestion control mechanism (RCCM), and the variable frame rate H.263+ encoding are the two key features. Through a seamless integration of these feature components, it is demonstrated that network adaptivity is enhanced to mitigate the packet loss and the bandwidth fluctuation, resulting in a smoother video experience at the receiver.

Paper Details

Date Published: 18 October 1999
PDF: 11 pages
Proc. SPIE 3808, Applications of Digital Image Processing XXII, (18 October 1999); doi: 10.1117/12.365828
Show Author Affiliations
Young-Gook Kim, Univ. of Southern California (United States)
Hwangjun Song, Univ. of Southern California (South Korea)
Yon Jun Chung, Univ. of Southern California (United States)
JongWon Kim, Univ. of Southern California (South Korea)
C.-C. Jay Kuo, Univ. of Southern California (United States)


Published in SPIE Proceedings Vol. 3808:
Applications of Digital Image Processing XXII
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top