Share Email Print
cover

Proceedings Paper

Constructing biomolecular motor-powered hybrid NEMS devices
Author(s): George D. Bachand; Carlo D. Montemagno
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The recognition of many enzymes as nanoscale molecular motors has allowed for the potential creation of hybrid organic/inorganic nano-electro-mechanical (NEMS) devices. The long-range goal of this research is the integration of F1-ATPase with NEMS to produce useful nanoscale devices. A thermostable F1-ATPase coding sequence has been isolated, cloned, and engineered for high-level protein expression. Precise positioning, spacing, and orientation of single F1-ATPase molecules were achieved using patterned nickel arrays. An efficient, accurate, and adaptable assay was developed to assess the performance of single F1- ATPase motors, and confirmed a three-step mechanism of (gamma) subunit rotation during ATP hydrolysis. Further evaluation of the bioengineering and biophysical properties of F1-ATPase currently are being conducted, as well as the construction of an F1-ATPase-powered, hybrid NEMS device. The evolution of this technology will permit the creation of novel classes of nanoscale, hybrid devices.

Paper Details

Date Published: 1 October 1999
PDF: 7 pages
Proc. SPIE 3892, Device and Process Technologies for MEMS and Microelectronics, (1 October 1999); doi: 10.1117/12.364481
Show Author Affiliations
George D. Bachand, Cornell Univ. (United States)
Carlo D. Montemagno, Cornell Univ. (United States)


Published in SPIE Proceedings Vol. 3892:
Device and Process Technologies for MEMS and Microelectronics
Kevin H. Chau; Sima Dimitrijev, Editor(s)

© SPIE. Terms of Use
Back to Top