Share Email Print

Proceedings Paper

Unified mathematical framework for a compact and fully parallel n-D skeletonization procedure
Author(s): Antoine Manzanera; Thierry M. Bernard; Francoise J. Preteux; Bernard Longuet
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present in this paper a generic algorithm to compute the skeleton of an n-dimensional binary object. Considering the cartesian hypercubic grid, we provide a mathematical framework in which are given the explicit Boolean conditions under which the iterative thinning procedure removes a point. This algorithm preserves the topology in a sense which matches the properties usually used in 2D and 3D. Furthermore, it is based on an original kind of median hypersurface that gives to the skeleton good behavior with respect to both shape preservation and noise sensitivity. The algorithm is fully parallel, as no spatial subiterations are needed. The latter property, together with the symmetry of the boolean n-dimensional patterns leads to a perfectly isotropic skeleton. The logical expression of the algorithm is extremely concise, and in 2D, a large comparative study shows that the overall number of elementary Boolean operations needed to get the skeleton is smaller than for the other iterative algorithms reported in the literature.

Paper Details

Date Published: 23 September 1999
PDF: 12 pages
Proc. SPIE 3811, Vision Geometry VIII, (23 September 1999); doi: 10.1117/12.364113
Show Author Affiliations
Antoine Manzanera, Aerospatiale Missiles, DCE (France)
Thierry M. Bernard, Ecole Nationale Superieure des Techniques Avancees (France)
Francoise J. Preteux, Institut National des Telecommunications (France)
Bernard Longuet, Aerospatiale Missiles (France)

Published in SPIE Proceedings Vol. 3811:
Vision Geometry VIII
Longin Jan Latecki; Robert A. Melter; David M. Mount; Angela Y. Wu, Editor(s)

© SPIE. Terms of Use
Back to Top