Share Email Print
cover

Proceedings Paper

Geometric hashing and object recognition
Author(s): Peter F. Stiller; Birkett Huber
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly determine a small subset of the images that potentially contain a view of the given object (or a small set of objects that potentially match the item in the image). Since this must be accomplished independent of the pose of the object, the objects and images, which are characterized by configurations of geometric features such as points, lines and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry and its 'residual' in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of generating equations for the ideal of this correspondence gives a complete characterization of the view of independent relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine. Several potential directions for improving this scheme are also discussed. Finally, in a brief appendix, we discuss an alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions and arrive at invariant equations (in the Plucker coordinates) that are more numerically robust in applications.

Paper Details

Date Published: 23 September 1999
PDF: 8 pages
Proc. SPIE 3811, Vision Geometry VIII, (23 September 1999); doi: 10.1117/12.364094
Show Author Affiliations
Peter F. Stiller, Texas A&M Univ. (United States)
Birkett Huber, Texas A&M Univ. (United States)


Published in SPIE Proceedings Vol. 3811:
Vision Geometry VIII
Longin Jan Latecki; Robert A. Melter; David M. Mount; Angela Y. Wu, Editor(s)

© SPIE. Terms of Use
Back to Top