Share Email Print
cover

Proceedings Paper

High-resolution tomography for scattering media by synthesis of optical coherence function
Author(s): Zuyuan He; Kazuo Hotate
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A technique named synthesized optical coherence tomography (SOCT) has been developed as an alternative method of the well-known optical coherence tomography (OCT) for cross- sectional imaging of scattering objects. The SOCT is based on the principle of the synthesis of optical coherence function. Instead of the low coherence light source in the OCT, the SOCT uses a super structure grating (SSG) distributed Bragg reflector tunable laser diode as the light source. By stepwise optical frequency modulation, a comb-shaped power spectrum is obtained; thus the optical coherence function is synthesized into a delta-function-like peak at an arbitrary location. When the injection currents to the SSG sections and the phase control section are modulated synchronically and in a proper relation, an equally spaced frequency tuning of a range of near 40 nm is obtained, corresponding to a spatial resolution of several tens of microns theoretically. The location of the coherence peak can be adjusted by the spacing in the frequency modulation and scanned by the simultaneous phase modulation in the reference wave. The longitudinal scattering distribution of the object under test is thus obtained without mechanically driven reference. Two-dimensional tomography was demonstrated in a basic experiment with lateral scanning mechanism.

Paper Details

Date Published: 9 September 1999
PDF: 8 pages
Proc. SPIE 3823, Laser Metrology and Inspection, (9 September 1999); doi: 10.1117/12.360983
Show Author Affiliations
Zuyuan He, Univ. of Tokyo (Japan)
Kazuo Hotate, Univ. of Tokyo (Japan)


Published in SPIE Proceedings Vol. 3823:
Laser Metrology and Inspection
Hans J. Tiziani; Pramod Kumar Rastogi, Editor(s)

© SPIE. Terms of Use
Back to Top