Share Email Print

Proceedings Paper

Self-reconfiguration planning for a class of modular robots
Author(s): Arancha Casal; Mark H. Yim
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Modular self-reconfigurable robots consist of large numbers of identical modules that possess the ability to reconfigure into different shapes as required by the task at hand. For example, such a robot could start out as a snake to traverse a narrow pipe, then re-assemble itself into a six-legged spider to move over uneven terrain, growing a pair of arms to pick up and manipulate an object at the same time. This paper examines the self-reconfigurable problem and present a divide-and-conquer strategy to solve reconfiguration for a class of problems referred to as closed-chain reconfiguration. This class includes reconfigurable robots whose topologies are described by 1D combinatorial topology. A robot topology is first decomposed into a hierarchy of small 'substrates' belonging to a finite set. Basic reconfiguration operations between the substructures in the set are precomputed, optimized and stored in a lookup table. The entire reconfiguration then consists of an ordered series of simple, precomputed sub-reconfigurations happening locally among the substructures.

Paper Details

Date Published: 26 August 1999
PDF: 12 pages
Proc. SPIE 3839, Sensor Fusion and Decentralized Control in Robotic Systems II, (26 August 1999); doi: 10.1117/12.360345
Show Author Affiliations
Arancha Casal, Xerox Palo Alto Research Ctr. and Stanford Univ. (United States)
Mark H. Yim, Xerox Palo Alto Research Ctr. (United States)

Published in SPIE Proceedings Vol. 3839:
Sensor Fusion and Decentralized Control in Robotic Systems II
Gerard T. McKee; Paul S. Schenker, Editor(s)

© SPIE. Terms of Use
Back to Top