Share Email Print
cover

Proceedings Paper

Robot modularity for self-reconfiguration
Author(s): Peter M. Will; Andres Castano; Wei-Min Shen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Metamorphic robots are an emerging field in which robotics can dynamically reconfigure shape and size not only for individual roots but also for complex structures that are formed by multiple robots. Such capability is highly in tasks such as fire fighting, earthquake rescue, and battlefield scouting, where robots must go through unexpected situations and obstacles and perform tasks that are difficult for fixed-shape robots. This research direction present a number of technical research challenges. Specifically, metamorphic robots must be able to decompose and reassemble at will from a set of basic connectable modules. Such modules must be small, self-sufficient and relatively homogeneous. In this paper, we present our approach to address these issue and describe the design of the CONRO modules. These modules are equipped with a low power micro-processor, memory chips, sensors, actuators, power supplies, and miniature mechanical connectors used for communication and power sharing. We will also describe a set of control mechanisms for controlling gaits and reconfigurations. We conclude the paper with a status report of the CONRO project and a list of the future work needed to fully realize the construction of the CONRO metamorphic robots.

Paper Details

Date Published: 26 August 1999
PDF: 10 pages
Proc. SPIE 3839, Sensor Fusion and Decentralized Control in Robotic Systems II, (26 August 1999); doi: 10.1117/12.360344
Show Author Affiliations
Peter M. Will, Univ. of Southern California (United States)
Andres Castano, Univ. of Southern California (United States)
Wei-Min Shen, Univ. of Southern California (United States)


Published in SPIE Proceedings Vol. 3839:
Sensor Fusion and Decentralized Control in Robotic Systems II
Gerard T. McKee; Paul S. Schenker, Editor(s)

© SPIE. Terms of Use
Back to Top