Share Email Print

Proceedings Paper

Preferable movement of a multijoint robot arm using a genetic algorithm
Author(s): Fumihiko Yano; Yoshiaki Toyoda
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To control the position and movement of an end-effector on the tip of a multi-joint robot arm is known to include a kind of redundant problem. Although the end-effector is set its position by each angle of the joints, the angle of each joint cannot be uniquely determined by the position of the end-effector. Each of infinite number of different sets of joint angles usually represent the same position of the end- effector. This paper describes how to control the angle of each joint to move its end-effector from a starting point to an ending point on an X-Y plane preferably. We first separate standpoints into two to define the preferable movement; 1) the standpoint of the end-effector, and 2) the standpoint of the joints. Then, we define multiple objective functions from each standpoint. Finally, we formulate the problem into a multi-purpose programming problem. We apply a genetic algorithm to solve this problem and obtain satisfied solutions, which have a smooth movement of the end-effector and less rotation of the joints. This paper is suggestive that the approach described here can easily be extended to a problem with a multi-joint robot arm in a 3D space, and also to a problem with obstacles between starting and ending points.

Paper Details

Date Published: 26 August 1999
PDF: 9 pages
Proc. SPIE 3837, Intelligent Robots and Computer Vision XVIII: Algorithms, Techniques, and Active Vision, (26 August 1999); doi: 10.1117/12.360286
Show Author Affiliations
Fumihiko Yano, Obirin Junior College (Japan)
Yoshiaki Toyoda, Aoyama Gakuin Univ. (Japan)

Published in SPIE Proceedings Vol. 3837:
Intelligent Robots and Computer Vision XVIII: Algorithms, Techniques, and Active Vision
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top