Share Email Print

Proceedings Paper

Principal component analysis in the wavelet domain: new features for underwater object recognition
Author(s): Gordon S. Okimoto; David W. Lemonds
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Principal component analysis (PCA) in the wavelet domain provides powerful features for underwater object recognition applications. The multiresolution analysis of the Morlet wavelet transform (MWT) is used to pre-process echo returns from targets ensonified by biologically motivated broadband signal. PCA is then used to compress and denoise the resulting time-scale signal representation for presentation to a hierarchical neural network for object classification. Wavelet/PCA features combined with multi-aspect data fusion and neural networks have resulted in impressive underwater object recognition performance using backscatter data generated by simulate dolphin echolocation clicks and bat- like linear frequency modulated upsweeps. For example, wavelet/PCA features extracted from LFM echo returns have resulted in correct classification rates of 98.6 percent over a six target suite, which includes two mine simulators and four clutter objects. For the same data, ROC analysis of the two-class mine-like versus non-mine-like problem resulted in a probability of detection of 0.981 and a probability of false alarm of 0.032 at the 'optimal' operating point. The wavelet/PCA feature extraction algorithm is currently being implemented in VLSI for use in small, unmanned underwater vehicles designed for mine- hunting operations in shallow water environments.

Paper Details

Date Published: 2 August 1999
PDF: 12 pages
Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, (2 August 1999); doi: 10.1117/12.357091
Show Author Affiliations
Gordon S. Okimoto, Trex Enterprises, Inc. (United States)
David W. Lemonds, ORINCON Corp. (United States)

Published in SPIE Proceedings Vol. 3710:
Detection and Remediation Technologies for Mines and Minelike Targets IV
Abinash C. Dubey; James F. Harvey; J. Thomas Broach; Regina E. Dugan, Editor(s)

© SPIE. Terms of Use
Back to Top