Share Email Print
cover

Proceedings Paper

Vapor sensing with arrays of carbon black-polymer composites
Author(s): Adam J. Matzger; Thomas P. Vaid; Nathan Saul Lewis
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Thin films of carbon black-organic polymer composites have been deposited across two metallic leads, with swelling- induced resistance changes of the films signaling the presence of vapors. To identify and classify vapors, arrays of such vapor-sensing elements have been constructed, with each element containing a different organic polymer as the insulating phase. The differing gas-solid partition coefficients for the various polymers of the sensor array produce a pattern of resistance changes that can be used to classify vapors and vapor mixtures. This type of sensor array has been shown to resolve all organic vapors that have been analyzed, and can even resolve H2O from D2O. Blends of poly(vinyl acetate) and poly(methyl methacrylate) have been used to produce a series of sensor that response to vapors with a change in resistance of a magnitude that is not simply a linear combination of the responses of the pure polymers. These compatible blend composite detectors provided additional analyte discrimination information relative to a reference detector array that only contained composites formed using the pure polymer phases. Vapor signatures from chemicals used in land mine explosives, including TNT, DNT, and DNB, have been detected in air in short sampling time and discriminated from each other using these sensor arrays.

Paper Details

Date Published: 2 August 1999
PDF: 6 pages
Proc. SPIE 3710, Detection and Remediation Technologies for Mines and Minelike Targets IV, (2 August 1999); doi: 10.1117/12.357053
Show Author Affiliations
Adam J. Matzger, California Institute of Technology (United States)
Thomas P. Vaid, California Institute of Technology (United States)
Nathan Saul Lewis, California Institute of Technology (United States)


Published in SPIE Proceedings Vol. 3710:
Detection and Remediation Technologies for Mines and Minelike Targets IV
Abinash C. Dubey; James F. Harvey; J. Thomas Broach; Regina E. Dugan, Editor(s)

© SPIE. Terms of Use
Back to Top