Share Email Print

Proceedings Paper

Feasibility of printing 0.1-um technology with optical lithography
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In the same way as 248 nm lithography is now being pushed to 0.15 and even 0.13 micrometers technologies, 193 nm lithography is expected to be used for printing the 0.1micrometers technologies. In this paper, we show results of a simulation study using Prolith 6.0 to investigate the feasibility of printing the 0.1 micrometers dense lines and spaces and 70 nm isolated lines. Since good resists models for 193 nm lithography are not available yet, we extrapolated 248 nm resists models to 193nm and 157nm illumination. First the optimum NA/sigma settings are obtained for printing those features in different illumination modes. Therefore binary masks versus phase shifting techniques and conventional versus off-axis illumination are compared. Maximum DOF and EL for a system without lens aberrations are the main optimization criteria. Consequently CD variations is calculated when a full set of aberrations is taken into account. This realistic set of aberrations has been obtained by scaling down Zernike coefficients measured in 248nm systems and scaled at different RMS levels. Besides lens aberrations also stochastic variations in focus, exposure dose and reticle CD and phase are assumed.

Paper Details

Date Published: 26 July 1999
PDF: 11 pages
Proc. SPIE 3679, Optical Microlithography XII, (26 July 1999); doi: 10.1117/12.354347
Show Author Affiliations
Mireille Maenhoudt, IMEC (Belgium)
Staf Verhaegen, IMEC (Belgium)
Kurt G. Ronse, IMEC (Belgium)
Donis G. Flagello, ASM Lithography B.V. (United States)
Bernd Geh, Carl Zeiss (United States)
Winfried M. Kaiser, Carl Zeiss (Germany)

Published in SPIE Proceedings Vol. 3679:
Optical Microlithography XII
Luc Van den Hove, Editor(s)

© SPIE. Terms of Use
Back to Top