Share Email Print

Proceedings Paper

Micromechanical filters for miniaturized low-power communications
Author(s): Clark T.-C. Nguyen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

With Q's in the tens to hundreds of thousands, micromachined vibrating resonators are proposed as IC-compatible tanks for use in the highly selective filters of communications subsystems. To date, bandpass filters consisting of spring- coupled micro-mechanical resonators have been demonstrated in a frequency range from HF to VHF. In particular, two- resonator micromechanical bandpass filters have been demonstrated with frequencies up to 35 MHz, percent bandwidths on the order of 0.2%, and insertion losses less than 2 dB. In addition, free-free beam, single-pole resonators have recently been realized with frequencies up to 92 MHz and Q's around 8,000. Evidence suggests that the ultimate frequency range of this high-Q tank technology depends upon material limitations, as well as design constraints--in particular, to the degree of electromechanical coupling achievable in micro-scale resonators.

Paper Details

Date Published: 20 July 1999
PDF: 12 pages
Proc. SPIE 3673, Smart Structures and Materials 1999: Smart Electronics and MEMS, (20 July 1999); doi: 10.1117/12.354265
Show Author Affiliations
Clark T.-C. Nguyen, Univ. of Michigan (United States)

Published in SPIE Proceedings Vol. 3673:
Smart Structures and Materials 1999: Smart Electronics and MEMS
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top