Share Email Print
cover

Proceedings Paper

Modeling of laser knife-edge and pinhole experiments
Author(s): Charles D. Boley; Kent G. Estabrook; Jerome M. Auerbach; Michael D. Feit; Alexander M. Rubenchik
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We describe simulations of experiments invovling laser illumination of a metallic knife edge in the Optical Sciences Laboratory (OSL) at LLNL, and pinhole closure in the Beamlet experiment at LLNL. The plasma evolution is modeled via LASNEX. In OSL, the calculated phases of a probe beam are found to exhibit the same behavior as in experiment but to be consistently larger. The motion of a given phase contour tends to decelerate at high intensities. At fixed intensity, the speed decreases with atomic mass. We then calculate the plasma associated with 4-leaf pinholes on the Beamlet transport spatial filter. We employ a new propagation code to follow a realistic input beam through the entire spatial filter, including the plasmas. The detailed behavior of the output wavefronts is obtained. We show how closure depends on the orientation and material of the pinholes blades. As observed in experiment, a diamond orientation is preferable to a square orientation, and tantalum performs better than stainless steel.

Paper Details

Date Published: 23 July 1999
PDF: 12 pages
Proc. SPIE 3492, Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, (23 July 1999); doi: 10.1117/12.354166
Show Author Affiliations
Charles D. Boley, Lawrence Livermore National Lab. (United States)
Kent G. Estabrook, Lawrence Livermore National Lab. (United States)
Jerome M. Auerbach, Lawrence Livermore National Lab. (United States)
Michael D. Feit, Lawrence Livermore National Lab. (United States)
Alexander M. Rubenchik, Lawrence Livermore National Lab. (United States)


Published in SPIE Proceedings Vol. 3492:
Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion
W. Howard Lowdermilk, Editor(s)

© SPIE. Terms of Use
Back to Top