Share Email Print
cover

Proceedings Paper

Material mapping for 3D objects in hyperspectral images
Author(s): David Slater; Glenn Healey
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Automated material characterization and identification from airborne imagery is an important capability for many applications including target recognition and geospatial database construction. Hyperspectral imagery provides a rich source of information for this purpose but utilization is complicated by the variability in a material's observed spectral signature due to the ambient conditions and the scene geometry. In this paper, we present a method that uses a single spectral radiance function measured from a material under unknown conditions to synthesize a comprehensive set of radiance spectra that corresponds to that material over a wide range of conditions. This set of radiance spectra can be used to build a hyperspectral subspace representation that can be used for material identification over a wide range of circumstances. We demonstrate the use of these algorithms for model synthesis and material mapping using HYDICE imagery acquired at Fort Hood, Texas. The method correctly maps several classes of roofing materials, roads, and vegetation over significant spectral changes due to variation in surface orientation. We show that the approach outperforms methods based on direct spectral comparison.

Paper Details

Date Published: 16 July 1999
PDF: 11 pages
Proc. SPIE 3717, Algorithms for Multispectral and Hyperspectral Imagery V, (16 July 1999); doi: 10.1117/12.353030
Show Author Affiliations
David Slater, Univ. of California/Irvine (United States)
Glenn Healey, Univ. of California/Irvine (United States)


Published in SPIE Proceedings Vol. 3717:
Algorithms for Multispectral and Hyperspectral Imagery V
Sylvia S. Shen; Michael R. Descour, Editor(s)

© SPIE. Terms of Use
Back to Top