Share Email Print

Proceedings Paper

Pulse-width influence on laser-induced desorption of positive ions from ionic solids
Author(s): Richard M. Williams; Kenneth M. Beck; Alan G. Joly; J. Thomas Dickinson; Wayne P. Hess
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have compared the desorption of positive ions, including Mg+ and MgO+, form ionic magnesium oxide single crystals following pulsed laser excitation using either nanosecond or femtosecond sources. Following optical excitation, desorbed ions are rapidly extracted and mass analyzed using standard time-of-flight techniques. Ion yields and velocities are determined as a function of laser fluence. The threshold similarity is a surprising result, as sub-band gap nanosecond pulses are only likely to excite defect states efficiently, while the ultrahigh peak-power femtosecond pulses could in principle induce multiphoton and avalanche excitation. We argue that at least in this specific case, the important factor appears to be merely the number of photons and not the pulse duration. However, it is observed that femtosecond excitation yields considerable H+ and less interference from impurity alkali ions than does nanosecond excitation. The source of the protons is presumably the hydroxylated MgO surface.

Paper Details

Date Published: 15 July 1999
PDF: 8 pages
Proc. SPIE 3618, Laser Applications in Microelectronic and Optoelectronic Manufacturing IV, (15 July 1999); doi: 10.1117/12.352727
Show Author Affiliations
Richard M. Williams, Pacific Northwest National Lab. (United States)
Kenneth M. Beck, Pacific Northwest National Lab. (United States)
Alan G. Joly, Pacific Northwest National Lab. (United States)
J. Thomas Dickinson, Washington State Univ. (United States)
Wayne P. Hess, Pacific Northwest National Lab. (United States)

Published in SPIE Proceedings Vol. 3618:
Laser Applications in Microelectronic and Optoelectronic Manufacturing IV
Jan J. Dubowski; Henry Helvajian; Ernst-Wolfgang Kreutz; Koji Sugioka, Editor(s)

© SPIE. Terms of Use
Back to Top