Share Email Print

Proceedings Paper

Performance characterization and ground testing of an airborne CO2 differential absorption lidar system (phase II)
Author(s): Daniel C. Senft; Marsha J. Fox; Carla M. Hamilton; Dale A. Richter; N. Scott Higdon; Brian T. Kelly
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory (INEEL). The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS system, after the incorporation of modification and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests.

Paper Details

Date Published: 28 May 1999
PDF: 12 pages
Proc. SPIE 3707, Laser Radar Technology and Applications IV, (28 May 1999); doi: 10.1117/12.351341
Show Author Affiliations
Daniel C. Senft, Air Force Research Lab. (United States)
Marsha J. Fox, Spectral Sciences, Inc. (United States)
Carla M. Hamilton, Air Force Research Lab. (United States)
Dale A. Richter, ITT Systems and Sciences Corp. (United States)
N. Scott Higdon, ITT Systems and Sciences Corp. (United States)
Brian T. Kelly, Applied Technology Associates (United States)

Published in SPIE Proceedings Vol. 3707:
Laser Radar Technology and Applications IV
Gary W. Kamerman; Christian Werner, Editor(s)

© SPIE. Terms of Use
Back to Top