Share Email Print

Proceedings Paper

Scale-up of a cluster jet laser plasma source for extreme ultraviolet lithography
Author(s): Glenn D. Kubiak; Luis J. Bernardez; Kevin D. Krenz; William C. Sweatt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A high-average-power extreme UV (EUV) source based on a laser plasma cluster jet is being developed for EUV lithography. The source employs a cooled supersonic nozzle expansion to produce a dense beam of Xe clusters as the plasma source target. The cluster beam is irradiated with a pulsed laser to create a high-temperature plasma radiating efficiently in the EUV spectral region. To accommodate drive laser repetition rates of up to 6000 Hz, a continuous jet expansion with full Xe gas recycling is employed, rather than earlier pulsed jet expansions. The continuous jet employs an efficient high-throughput pumping scheme to minimize the ambient pressure highly-attenuating Xe gas. Source power scale-up is achieved by increasing laser repetition rate, keeping laser pulse parameters nominally fixed. In the first phase of EUV power scale-up, the continuous cluster jet source has been integrated with a 200 W laser driver operating at repetition rates up to 500 Hz. With this system, a laser-to-EUV conversion efficiency of 0.69 percent is achieved. In the second phase, the jet is being integrated with a 1700 W diode-pumped solid sate laser driver operating at repetition rates up to 6000 Hz. A brief description of the 1700 W laser system and its integration with the continuous cluster jet are discussed.

Paper Details

Date Published: 25 June 1999
PDF: 10 pages
Proc. SPIE 3676, Emerging Lithographic Technologies III, (25 June 1999); doi: 10.1117/12.351142
Show Author Affiliations
Glenn D. Kubiak, Sandia National Labs. (United States)
Luis J. Bernardez, Sandia National Labs. (United States)
Kevin D. Krenz, Sandia National Labs. (United States)
William C. Sweatt, Sandia National Labs. (United States)

Published in SPIE Proceedings Vol. 3676:
Emerging Lithographic Technologies III
Yuli Vladimirsky, Editor(s)

© SPIE. Terms of Use
Back to Top