Share Email Print

Proceedings Paper

Thunder actuator modeling and control with classical and fuzzy control algorithm
Author(s): Jun Kyung Song; Gregory N. Washington
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recently the design of curved thunder actuators (deflections from 1 mm - 15 mm) has been a topic of study for many researchers. The work in this study deals with the development of a general technique based on shell theory. The technique can be applied to a broad array of actuators to include: Rainbows, Thunders, C-Blocks and others. The formulation begins with the equations for a general shell theory. Next the equations are reduced to the forms of equations for the particular actuators in a manner that they can be applied to a myriad of curved composite actuators. The technique is then experimentally verified on a Thunder actuator system. Next, the system is controlled using both classical and intelligent control techniques. In addition hardware and circuitry issues are explored.

Paper Details

Date Published: 9 June 1999
PDF: 12 pages
Proc. SPIE 3668, Smart Structures and Materials 1999: Smart Structures and Integrated Systems, (9 June 1999); doi: 10.1117/12.350763
Show Author Affiliations
Jun Kyung Song, The Ohio State Univ. (United States)
Gregory N. Washington, The Ohio State Univ. (United States)

Published in SPIE Proceedings Vol. 3668:
Smart Structures and Materials 1999: Smart Structures and Integrated Systems
Norman M. Wereley, Editor(s)

© SPIE. Terms of Use
Back to Top