Share Email Print

Proceedings Paper

Rotary ultrasonic motors actuated by traveling flexural waves
Author(s): Yoseph Bar-Cohen; Xiaoqi Bao; Willem Grandia
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Efficient miniature actuators that are compact and consume low power are needed to drive space and planetary mechanisms in future NASA missions. Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors have emerged in commercial products but they need to be adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and also require effective analytical tools for the design of efficient motors. A finite element analytical model was developed to examine the excitation of flexural plate wave traveling in a piezoelectrically actuated rotary motor. The model uses 3D finite element and equivalent circuit models that are applied to predict the excitation frequency and modal response of the stator. This model incorporates the details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. The theoretical predictions were corroborated experimentally for the stator. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. Experiments have shown that the motor can sustain at least 230 temperature cycles from 0 degree(s)C to -90 degree(s)C at 7 Torr pressure significant performance change. Also, in an earlier study the motor lasted over 334 hours at -150 degree(s)C and vacuum. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

Paper Details

Date Published: 9 June 1999
PDF: 7 pages
Proc. SPIE 3668, Smart Structures and Materials 1999: Smart Structures and Integrated Systems, (9 June 1999); doi: 10.1117/12.350745
Show Author Affiliations
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)
Xiaoqi Bao, Jet Propulsion Lab. (United States)
Willem Grandia, Quality Material Inspection (United States)

Published in SPIE Proceedings Vol. 3668:
Smart Structures and Materials 1999: Smart Structures and Integrated Systems
Norman M. Wereley, Editor(s)

© SPIE. Terms of Use
Back to Top