Share Email Print
cover

Proceedings Paper

Advanced optical system for scanning-spot photorefractive keratectomy (PRK)
Author(s): Michael Mrochen; Christian Wullner; Vladimir A. Semchishen; Theo Seiler
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.

Paper Details

Date Published: 18 June 1999
PDF: 8 pages
Proc. SPIE 3591, Ophthalmic Technologies IX, (18 June 1999); doi: 10.1117/12.350609
Show Author Affiliations
Michael Mrochen, Univ. of Dresden (Switzerland)
Christian Wullner, Univ. of Dresden (Germany)
Vladimir A. Semchishen, Laser Research Ctr. (Russia)
Theo Seiler, Univ. of Dresden (Switzerland)


Published in SPIE Proceedings Vol. 3591:
Ophthalmic Technologies IX
Bruce E. Stuck; Pascal O. Rol; Michael Belkin; Karen Margaret Joos; Fabrice Manns; Bruce E. Stuck; Michael Belkin, Editor(s)

© SPIE. Terms of Use
Back to Top