Share Email Print
cover

Proceedings Paper

Vibration and noise control using an optimal output feedback controller
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper the design of an optimal controller using discretely placed collocated sensor/actuator pairs to control the vibration of a plate structure is presented. Three- dimensional finite elements are used to model the smart structure containing discrete piezoelectric sensors and actuators by the use of a combination of solid, transition, and shell elements. Since several discrete piezoelectric patches are spatially distributed in the structure to effectively observe and control the vibration of a structure, the system model is thus utilized to design multi-input-multi- output (MIMO) controller. The output feedback controller is then employed to emulate the optimal controller by solving the Riccati equations from modal space model. An optimal controller design for the vibration suppression of a clamped plate is presented for the steady state excitation case. The reduction in the sound pressure level inside an enclosure radiated from this optimally controlled vibrating plate is also estimated.

Paper Details

Date Published: 4 June 1999
PDF: 11 pages
Proc. SPIE 3667, Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, (4 June 1999); doi: 10.1117/12.350092
Show Author Affiliations
Young-Hun Lim, The Pennsylvania State Univ. (United States)
Senthil V. Gopinathan, The Pennsylvania State Univ. (United States)
Vasundara V. Varadan, The Pennsylvania State Univ. (United States)
Vijay K. Varadan, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 3667:
Smart Structures and Materials 1999: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top