Share Email Print
cover

Proceedings Paper

Thermomechanical representation of shape memory behavior
Author(s): Dirk Helm; Peter Haupt
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this article we propose a material model for the representation of shape memory behavior based on a phenomenological thermoviscoplasticity theory. The constitutive model is thermodynamically consistent in the sense of its compatibility with the Clausius-Duhem inequality as a special formulation of the 2nd law of thermodynamics. Numerical solutions of the constitutive equations for isothermal and nonisothermal strain and stress processes demonstrate that the behavior of these materials, namely the one- and two-way shape memory effect, the pseudoelasticity and the pseudoplasticity as well as the transition region between pseudoelasticity and pseudoplasticity, is depicted as observed.

Paper Details

Date Published: 4 June 1999
PDF: 12 pages
Proc. SPIE 3667, Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, (4 June 1999); doi: 10.1117/12.350086
Show Author Affiliations
Dirk Helm, Univ. of Kassel (Germany)
Peter Haupt, Univ. of Kassel (Germany)


Published in SPIE Proceedings Vol. 3667:
Smart Structures and Materials 1999: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top