Share Email Print

Proceedings Paper

Thermomagnetic optimization of solenoidal magnetostrictive actuators
Author(s): David C. Meeker; David M. Dozor
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Magnetostrictive materials often rely on magnetic fields generated through the use of a solenoidal coil. However, the field-generating coil also acts as a source of heat causing thermally induced strains in the magnetostrictive drive element. To insure that the useful magnetostrictive strains are large in comparison with the thermally induced strains, the solenoid may be optimized. This paper presents a simple one dimensional (1-D) magnetic model useful for predicting the magnetic field inside the magnetostrictive drive rod. The advantage of this model is that it can be evaluated very quickly, making it well suited for use in optimization algorithms. A figure of merit is presented that weighs the energy stored in the coil against the power that must be dissipated to maintain the field. With the magnetic model and cost function, the solenoid may be sized to maximize the volume averaged field in the magnetostrictive element per unit of volume averaged dissipated heat in the solenoidal coil. While previous work addressed field/power optimization at the center of air-cored selenoids, the work presented here considers optimization of the average field along a rod of permeable magnetostrictive material. The results indicate that coil quality decreases rapidly if the coil is thinner than optimal, but decreases rather slowly for a thicker than optimal coil.

Paper Details

Date Published: 4 June 1999
PDF: 10 pages
Proc. SPIE 3667, Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, (4 June 1999); doi: 10.1117/12.350067
Show Author Affiliations
David C. Meeker, Foster-Miller, Inc. (United States)
David M. Dozor, Mechatronic Technology Co. (United States)

Published in SPIE Proceedings Vol. 3667:
Smart Structures and Materials 1999: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top