Share Email Print

Proceedings Paper

Advanced magnetostrictive finite element method (FEM) modeling development
Author(s): G. Nicholas Weisensel; Rick L. Zrostlik; Gregory Paul Carman
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Designers need advanced tools to tap the full potential of the benefits of giant magnetostrictive materials (GMMs) for advanced commercial, space, and military applications. To overcome the deficiencies in present models, a new magnetostrictive analytical formulation needs to be developed that includes the nonlinearities experienced in advanced device designs. Presented herein are a strategy and approach for developing the needed advanced tools to move magnetostrictive transducer design to much higher levels of performance and effectiveness. Advanced GMM FEM modeling capabilities are being developed by extending and combining leading edge theoretical work in nonlinear constitutive equations and ferromagnetic hysteresis. A nonlinear constitutive model for a GMMs uses a Taylor series expansion of independent variables of stress, magnetization and temperature to obtain a polynomial relation in terms of the Gibbs free energy. Phenomenological justification is used to eliminate some terms. Development of a magnetization based magnetostrictive material model at the macroscopic continuum level will be a novel advancement of the state of the art. The planned hysteresis model is derived from related work on energy-based models which considers the total magnetization as the combination of a reversible and an irreversible component. Because both the constitutive and hysteresis formulations are in terms of the same state variables, integration into a new complete magnetostrictive material description is inherently more feasible. The result will be a validated, fully coupled, 3-dimensional, nonlinear, hysteretic, dynamic thermo-electro- magneto-acousto-mechanical (TEMAM) model of magnetostrictive materials. Development of new finite elements to take advantage of the advanced modeling results is planned. The new capability will provide meaningful performance predictions, parameter sensitivity studies, trade-off studies and design optimizations, thereby enabling next-generation applications at reduced developmental cost.

Paper Details

Date Published: 4 June 1999
PDF: 12 pages
Proc. SPIE 3667, Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, (4 June 1999); doi: 10.1117/12.350066
Show Author Affiliations
G. Nicholas Weisensel, ETREMA Products, Inc. (United States)
Rick L. Zrostlik, ETREMA Products, Inc. (United States)
Gregory Paul Carman, Univ. of California/Los Angeles (United States)

Published in SPIE Proceedings Vol. 3667:
Smart Structures and Materials 1999: Mathematics and Control in Smart Structures
Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top