Share Email Print
cover

Proceedings Paper

Thin-walled compliant plastic structures for mesoscale fluidic systems
Author(s): Robin R. Miles; Daniel L. Schumann
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Thin-walled, compliant plastic structures for meso-scale fluidic systems were fabricated, tested and used to demonstrate valving, pumping, metering and mixing. These structures permit the isolation of actuators and sensors form the working fluid, thereby reducing chemical compatibility issues. The thin-walled, compliant plastic structures can be used in either a permanent, reusable system or as an inexpensive disposable for single-use assay systems. The implementation of valving, pumping, mixing and metering operations involve only an elastic change in the mechanical shape of various portions of the structure. Advantages provided by the thin-walled plastic structures include reduced dead volume and rapid mixing. Five different methods for fabricating the thin-walled plastic structures discussed including laser welding, molding, vacuum forming, thermal heat staking and photolithographic patterning techniques.

Paper Details

Date Published: 3 June 1999
PDF: 8 pages
Proc. SPIE 3606, Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications II, (3 June 1999); doi: 10.1117/12.350053
Show Author Affiliations
Robin R. Miles, Lawrence Livermore National Lab. (United States)
Daniel L. Schumann, Lawrence Livermore National Lab. (United States)


Published in SPIE Proceedings Vol. 3606:
Micro- and Nanofabricated Structures and Devices for Biomedical Environmental Applications II
Mauro Ferrari, Editor(s)

© SPIE. Terms of Use
Back to Top