Share Email Print
cover

Proceedings Paper

Numerical simulations of a diode laser BPH treatment system
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Numerical simulations are presented of the laser-tissue interaction of a diode laser system for treating benign prostate hyperplasia. The numerical model includes laser light transport, heat transport, cooling due to blood perfusion, thermal tissue damage, and enthalpy of tissue damage. Comparisons of the stimulation results to clinical data are given. We report that a reasonable variation from a standard set of input data produces heating times which match those measured in the clinical trials. A general trend of decreasing damage volume with increasing heating time is described. We suggest that the patient-to-patient variability seen in the data can be explained by differences in fundamental biophysical properties such as the optical coefficients. Further work is identified, including the measurement and input to the model of several specific data parameters such as optical coefficients, blood perfusion cooling rate, and coagulation rates.

Paper Details

Date Published: 14 June 1999
PDF: 15 pages
Proc. SPIE 3601, Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, (14 June 1999); doi: 10.1117/12.349997
Show Author Affiliations
Richard A. London, Lawrence Livermore National Lab. (United States)
Victor C. Esch, Indigo Medical Inc. (United States)
Stephanos Papademetriou, Indigo Medical Inc. (United States)


Published in SPIE Proceedings Vol. 3601:
Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical
Steven L. Jacques; David H. Sliney; Gerhard J. Mueller; Gerhard J. Mueller; Andre Roggan; Andre Roggan; David H. Sliney, Editor(s)

© SPIE. Terms of Use
Back to Top