Share Email Print

Proceedings Paper

Steady-state sinusoidal behavior of elastomeric dampers
Author(s): Vijay Madhavan; Norman M. Wereley; Thierry Sieg
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents an experimental and analytical investigation of an elastomeric damping material and assesses its potential application to stability augmentation of hingeless and bearingless helicopter rotors. Double lap shear specimens were tested on a servo-hydraulic testing machine. Single frequency sinusoidal tests were conducted over a strain amplitude range of 0 - 30% at three frequencies (lag/rev, 1/rev and a lower harmonic of the rotor). The frequencies were chosen such that the effect of the damper in mitigating instability phenomena, like ground and air resonance, could be analyzed. The effects of frequency, amplitude, pre-load and material self-heating were studied. A three-element mechanisms-based damper model was developed that accurately captures the energy dissipation and hysteresis behavior of the damper. The model incorporates a linear stiffness, viscous damping and a non-linear slip element that are placed in parallel to each other. The parameters of the model were identified using an LMS technique. The model was validated by reconstructing measured hysteresis cycles using these parameters.

Paper Details

Date Published: 2 June 1999
PDF: 11 pages
Proc. SPIE 3672, Smart Structures and Materials 1999: Passive Damping and Isolation, (2 June 1999); doi: 10.1117/12.349789
Show Author Affiliations
Vijay Madhavan, Univ. of Maryland/College Park (United States)
Norman M. Wereley, Univ. of Maryland/College Park (United States)
Thierry Sieg, Paulstra Industries Inc. (France)

Published in SPIE Proceedings Vol. 3672:
Smart Structures and Materials 1999: Passive Damping and Isolation
T. Tupper Hyde, Editor(s)

© SPIE. Terms of Use
Back to Top