Share Email Print
cover

Proceedings Paper

Electroactive polymer (EAP) actuators for planetary applications
Author(s): Yoseph Bar-Cohen; Sean P. Leary; Mohsen Shahinpoor; Joycelyn S. Harrison; Joseph G. Smith
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper.

Paper Details

Date Published: 28 May 1999
PDF: 7 pages
Proc. SPIE 3669, Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, (28 May 1999); doi: 10.1117/12.349708
Show Author Affiliations
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)
Sean P. Leary, Jet Propulsion Lab. (United States)
Mohsen Shahinpoor, Univ. of New Mexico (United States)
Joycelyn S. Harrison, NASA Langley Research Ctr. (United States)
Joseph G. Smith, NASA Langley Research Ctr. (United States)


Published in SPIE Proceedings Vol. 3669:
Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top