Share Email Print
cover

Proceedings Paper

Effect of the surface-electrode resistance on the actuation of ionic polymer-metal composite (IPMC) artificial muscles
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this work the effect of surface-electrode resistance on the actuation of ionic polymer-metal composites (IPMCs) artificial muscles is investigated. The as-received ion-exchange membrane (IEM) was platinum-composited by using a unique chemical processing technique that employs a platinum-salt and appropriate reducing agents. The IPMCs artificial muscles were optimized for producing maximum forces by changing multiple process parameters including time-dependent concentrations of the salt and reducing agents. The analytical results confirmed that the platinum electrode is successfully deposited on the surface of the IEM where platinum particles stay in a dense form that appears to introduce a significant level of surface- electrode resistance. In order to address this problem, a thin layer of silver (or copper) was electrochemically deposited on top of the platinum electrode to reduce the surface-electrode resistance. Actuation tests were performed for such IPMC artificial muscles under a low voltage. Tests results show that the lower surface-electrode resistance generates the higher actuation capability in the IPMCs artificial muscles. This observation is briefly discussed based on an equivalent circuit theory regarding the IPMC and a possible electrophoretic cation-transport phenomenon under the influence of an electric field.

Paper Details

Date Published: 28 May 1999
PDF: 12 pages
Proc. SPIE 3669, Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, (28 May 1999); doi: 10.1117/12.349703
Show Author Affiliations
Kwang J. Kim, Univ. of New Mexico (United States)
Mohsen Shahinpoor, Univ. of New Mexico (United States)


Published in SPIE Proceedings Vol. 3669:
Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top