Share Email Print
cover

Proceedings Paper

Effect of the surface-electrode resistance on the actuation of ionic polymer-metal composite (IPMC) artificial muscles
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work the effect of surface-electrode resistance on the actuation of ionic polymer-metal composites (IPMCs) artificial muscles is investigated. The as-received ion-exchange membrane (IEM) was platinum-composited by using a unique chemical processing technique that employs a platinum-salt and appropriate reducing agents. The IPMCs artificial muscles were optimized for producing maximum forces by changing multiple process parameters including time-dependent concentrations of the salt and reducing agents. The analytical results confirmed that the platinum electrode is successfully deposited on the surface of the IEM where platinum particles stay in a dense form that appears to introduce a significant level of surface- electrode resistance. In order to address this problem, a thin layer of silver (or copper) was electrochemically deposited on top of the platinum electrode to reduce the surface-electrode resistance. Actuation tests were performed for such IPMC artificial muscles under a low voltage. Tests results show that the lower surface-electrode resistance generates the higher actuation capability in the IPMCs artificial muscles. This observation is briefly discussed based on an equivalent circuit theory regarding the IPMC and a possible electrophoretic cation-transport phenomenon under the influence of an electric field.

Paper Details

Date Published: 28 May 1999
PDF: 12 pages
Proc. SPIE 3669, Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, (28 May 1999); doi: 10.1117/12.349703
Show Author Affiliations
Kwang J. Kim, Univ. of New Mexico (United States)
Mohsen Shahinpoor, Univ. of New Mexico (United States)


Published in SPIE Proceedings Vol. 3669:
Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top