Share Email Print

Proceedings Paper

Scaling laws of microactuators and potential applications of electroactive polymers in MEMS
Author(s): Chang Liu; Yoseph Bar-Cohen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Besides the scale factor that distinguishes the various spices fundamentally biological muscles changes little between species indicating a highly optimized system, Electroactive polymer actuators offer the closest resemblance to biological muscles however beside the large actuation displacement these materials are falling short with regards to the actuation force. As improved materials emerging it is becoming necessary to address key issues such as the need for effective electromechanical modeling and guiding parameters in scaling the actuators. In this paper, we will review the scaling laws for three major actuation mechanisms that are of relevance to micro electromechanical systems: electrostatic actuation, magnetic actuation, thermal bimetallic actuation, and piezoelectric actuation.

Paper Details

Date Published: 28 May 1999
PDF: 10 pages
Proc. SPIE 3669, Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, (28 May 1999); doi: 10.1117/12.349692
Show Author Affiliations
Chang Liu, Univ. of Illinois/Urbana-Champaign (United States)
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 3669:
Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top