Share Email Print
cover

Proceedings Paper

Measurement of acoustic noise effect due to the gradient pulsing in functional magnetic resonance imaging (fMRI)
Author(s): SungTaek Chung; Inchang Song; Hyun Wook Park
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In MRI, gradient magnetic fields are used to obtain the spatial information by frequency modulation of the received signal. The gradient fields are generated by switching currents on the gradient coils, which generates acoustic noise due to Lorentzian force. In particular, fast imaging methods, which are usually used for fMRI, require fast switching of the gradient pulse, thereby generating large acoustic noise. The intensity of the acoustic noise depends on the imaging method and the pulse sequences. The acoustic noise induced by gradient pulsing may interfere for signal enhancement of brain areas with the presentation of auditory stimuli during fMRI. In this paper, the gradient pulsing effects on fMRI are analyzed for different combinations of gradients. The experimental results show that total activations by visual stimulation are slightly larger for a combination of Z readout and Y phase-encoding gradients than those for a combination of Y readout and Z phase-encoding gradients when sagittal-view fMRI is performed.

Paper Details

Date Published: 28 May 1999
PDF: 8 pages
Proc. SPIE 3659, Medical Imaging 1999: Physics of Medical Imaging, (28 May 1999); doi: 10.1117/12.349531
Show Author Affiliations
SungTaek Chung, Korea Advanced Institute of Science and Technology (South Korea)
Inchang Song, Seoul National Univ. College of Medicine (South Korea)
Hyun Wook Park, Korea Advanced Institute of Science and Technology (South Korea)


Published in SPIE Proceedings Vol. 3659:
Medical Imaging 1999: Physics of Medical Imaging
John M. Boone; James T. Dobbins, Editor(s)

© SPIE. Terms of Use
Back to Top