Share Email Print
cover

Proceedings Paper

Nonlinear algorithm for task-specific tomosynthetic image reconstruction
Author(s): Richard L. Webber; Hunter A. Underhill; Paul F. Hemler; John E. Lavery
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This investigation defines and tests a simple, nonlinear, task-specific method for rapid tomosynthetic reconstruction of radiographic images designed to allow an increase in specificity at the expense of sensitivity. Representative lumpectomy specimens containing cancer from human breasts were radiographed with a digital mammographic machine. Resulting projective data were processed to yield a series of tomosynthetic slices distributed throughout the breast. Five board-certified radiologists compared tomographic displays of these tissues processed both linearly (control) and nonlinearly (test) and ranked them in terms of their perceived interpretability. In another task, a different set of nine observers estimated the relative depths of six holes bored in a solid Lucite block as perceived when observed in three dimensions as a tomosynthesized series of test and control slices. All participants preferred the nonlinearly generated tomosynthetic mammograms to those produced conventionally, with or without subsequent deblurring by means of iterative deconvolution. The result was similar (p less than 0.015) when the hole-depth experiment was performed objectively. We therefore conclude for certain tasks that are unduly compromised by tomosynthetic blurring, the nonlinear tomosynthetic reconstruction method described here may improve diagnostic performance with a negligible increase in cost or complexity.

Paper Details

Date Published: 28 May 1999
PDF: 8 pages
Proc. SPIE 3659, Medical Imaging 1999: Physics of Medical Imaging, (28 May 1999); doi: 10.1117/12.349500
Show Author Affiliations
Richard L. Webber, Wake Forest Univ. School of Medicine (United States)
Hunter A. Underhill, Wake Forest Univ. School of Medicine (United States)
Paul F. Hemler, Wake Forest Univ. School of Medicine (United States)
John E. Lavery, Army Research Lab. (United States)


Published in SPIE Proceedings Vol. 3659:
Medical Imaging 1999: Physics of Medical Imaging
John M. Boone; James T. Dobbins, Editor(s)

© SPIE. Terms of Use
Back to Top