Share Email Print
cover

Proceedings Paper

MEMS microshutter SLM for intensity modulation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Using two micro lens arrays and a MEMS micro shutter array, an intensity modulating Spatial Light Modulator is being developed at MEMS Optical, Inc. (patent pending) for high speed printing applications. The micro lens arrays are used to focus incident light to a point and then expand it back to its original size. At the focus point, a Foucault micro shutter array is used to modulate the amount of light allowed to pass through the aperture. The purpose for this device is for exposure control for high-speed electronic printing applications. The drive mechanism is based on an electrostatic lateral comb interdigitated drive. Design analysis shows a rise time of 1 - 2 microseconds for high voltage systems. This array of shutters is being implemented in a CMOS compatible process, and is capable of being integrated with on chip circuitry for opening and closing the shutters. The apertures are made using deep RIE etching, and the shutters are released using plasma etching. The result is an electronically controlled method of exposing a photosensitive surface at high speeds for the printing industry, with or without lasers.

Paper Details

Date Published: 1 June 1999
PDF: 6 pages
Proc. SPIE 3633, Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI, (1 June 1999); doi: 10.1117/12.349335
Show Author Affiliations
John R. Karpinsky, MEMS Optical, Inc. (United States)
Rodney L. Clark, MEMS Optical, Inc. (United States)
Jay A. Hammer, MEMS Optical, Inc. (United States)
Daniel M. Brown, MEMS Optical, Inc. (United States)


Published in SPIE Proceedings Vol. 3633:
Diffractive and Holographic Technologies, Systems, and Spatial Light Modulators VI
Ivan Cindrich; Sing H. Lee; Richard L. Sutherland, Editor(s)

© SPIE. Terms of Use
Back to Top