Share Email Print

Proceedings Paper

Automatic classification of urinary sediment images by using a hierarchical modular neural network
Author(s): Satoshi Mitsuyama; Jun Motoike; Hitoshi Matsuo
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We have developed an automated image-classification method for the examination of urinary sediment. Urine contains many kinds of particles of various colors and sizes. To classify these particles automatically, we developed a hierarchical modular neural network (HMNN) to enable accurate classification of urinary-sediment images. Simulations results showed that a neural network with a modular structure can classify artificially generated patterns more accurately than a single neural network (SNN). By using a HMNN, any kind of particle contained in urine can be automatically classified. We compared the classification accuracy when using the HMNN to that with a SNN and found that the classification accuracy for some classes of particles when using the HMNN was 25% to 30% higher than when using the SNN. With the HMNN, the examination accuracy was sufficient to allow automation of the examination process.

Paper Details

Date Published: 21 May 1999
PDF: 9 pages
Proc. SPIE 3661, Medical Imaging 1999: Image Processing, (21 May 1999); doi: 10.1117/12.348624
Show Author Affiliations
Satoshi Mitsuyama, Hitachi, Ltd. (Japan)
Jun Motoike, Hitachi, Ltd. (Japan)
Hitoshi Matsuo, Hitachi, Ltd. (Japan)

Published in SPIE Proceedings Vol. 3661:
Medical Imaging 1999: Image Processing
Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top