Share Email Print
cover

Proceedings Paper

Random sets technique for information fusion applied to estimation of brain functional images
Author(s): Therese M. Smith; Patrick A. Kelly
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new mathematical technique for information fusion based on random sets, developed and described by Goodman, Mahler and Nguyen (The Mathematics of Data Fusion, Kluwer, 1997) can be useful for estimation of functional brian images. Many image estimation algorithms employ prior models that incorporate general knowledge about sizes, shapes and locations of brain regions. Recently, algorithms have been proposed using specific prior knowledge obtained from other imaging modalities (for example, Bowsher, et al., IEEE Trans. Medical Imaging, 1996). However, there is more relevant information than is presently used. A technique that permits use of additional prior information about activity levels would improve the quality of prior models, and hence, of the resulting image estimate. The use of random sets provides this capability because it allows seemingly non-statistical (or ambiguous) information such as that contained in inference rules to be represented and combined with observations in a single statistical model, corresponding to a global joint density. This paper illustrates the use of this approach by constructing an example global joint density function for brain functional activity from measurements of functional activity, anatomical information, clinical observations and inference rules. The estimation procedure is tested on a data phantom with Poisson noise.

Paper Details

Date Published: 21 May 1999
PDF: 12 pages
Proc. SPIE 3661, Medical Imaging 1999: Image Processing, (21 May 1999); doi: 10.1117/12.348510
Show Author Affiliations
Therese M. Smith, Univ. of Massachusetts/Amherst (United States)
Patrick A. Kelly, Univ. of Massachusetts/Amherst (United States)


Published in SPIE Proceedings Vol. 3661:
Medical Imaging 1999: Image Processing
Kenneth M. Hanson, Editor(s)

© SPIE. Terms of Use
Back to Top