Share Email Print
cover

Proceedings Paper

Probe design for implantable fluorescence-based sensors
Author(s): Michael J. McShane; Sohi Rastegar; Gerard L. Cote
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fluorescent chemical sensors are being developed for in vivo use in quantification of important physiological species. Design of an optical probe for delivery of excitation radiation and collection of light emitted from subcutaneous fluorescent sensors is a critical step in developing reliable measurement methods. This paper outlines the use of Monte Carlo simulations of light propagation in estimating the radial distribution of light emitted from the sensor as well as tissue fluorescence. A discussion of how the results of such models can be used to optimize probe geometry for maximum signal-to-noise is presented. Sensitivity of the simulation to layer thickness, tissue optical properties, and sensor composition are detailed. Simulation output is also compared with experimental results and progress in development of one potential sensor system is presented.

Paper Details

Date Published: 17 May 1999
PDF: 8 pages
Proc. SPIE 3599, Optical Diagnostics of Biological Fluids IV, (17 May 1999); doi: 10.1117/12.348371
Show Author Affiliations
Michael J. McShane, Texas A&M Univ. (United States)
Sohi Rastegar, Texas A&M Univ. (United States)
Gerard L. Cote, Texas A&M Univ. (United States)


Published in SPIE Proceedings Vol. 3599:
Optical Diagnostics of Biological Fluids IV
Alexander V. Priezzhev; Toshimitsu Asakura, Editor(s)

© SPIE. Terms of Use
Back to Top