Share Email Print

Proceedings Paper

Optical monitoring of the concentration profile of submicron latex particles in flow through a translucent water-permeable tube: demonstration of flow-dependent concentration polarization of plasma
Author(s): Shigeo Wada; Toshiaki Iwai; Takeshi Karino
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is well accepted that hemodynamics plays an important role in atherogenesis in man. However, the precise mechanisms have not been elucidated yet. Recently, Karino and his coworkers hypothesized that flow-dependent concentration polarization of low-density lipoproteins (LDL: a carrier of cholesterol) may occur at a blood/endothelium boundary, leading to a high risk of atherogenesis in regions of slow flow and low wall shear rate where the concentration of LDL builds up. In this study, we attempted to confirm experimentally their predictions by measuring optically the concentration profile of polystyrene microspheres (used as a model of LDL) flowing in steady flow through a dialyses tube (used as a model of an artery) by transversing a laser beam across the tube and detecting the intensity of the transmitted light. It was found that surface concentration of the microsphere certainly increases with decreasing the flow rate (hence wall shear rate) and it occurs even under the conditions of a very low water filtration velocity encountered in normal arteries in vivo, thus giving a strong support to the hypothesis proposed by Karino et al.

Paper Details

Date Published: 7 May 1999
PDF: 4 pages
Proc. SPIE 3740, Optical Engineering for Sensing and Nanotechnology (ICOSN '99), (7 May 1999); doi: 10.1117/12.347796
Show Author Affiliations
Shigeo Wada, Hokkaido Univ. (Japan)
Toshiaki Iwai, Hokkaido Univ. (Japan)
Takeshi Karino, Hokkaido Univ. (Japan)

Published in SPIE Proceedings Vol. 3740:
Optical Engineering for Sensing and Nanotechnology (ICOSN '99)
Ichirou Yamaguchi, Editor(s)

© SPIE. Terms of Use
Back to Top