Share Email Print
cover

Proceedings Paper

New approach to mathematical and finite element modeling of delaminations in multidirectional multilayered laminated composite structures: I. Fracture criteria and finite element algorithm
Author(s): Alexei I. Borovkov; Yuri Y. Misnik
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper presents new approach to the fracture analysis of laminated composite structures (laminates). The first part of the paper is devoted to the general algorithm, which allows to obtain critical stresses for any structure considering only the strip made from the same laminate. The algorithm is based on the computation of the energy release rates for all three crack modes and allows to obtain macro-failure parameters such as critical stresses through the micro-fracture characteristics. The developed algorithm is also based on the locality principle in mechanics of composite structures and sequential heterogenization method. The algorithm can be applied both for classical models of laminates with homogenous layers and new 3D finite element (FE) models of interfacial cracks in multidirectional composite structures. The results of multilevel, multimodel and multivariant analysis of 3D delamination problems with detailed microstructure in the crack tip zone are presented.

Paper Details

Date Published: 5 May 1999
PDF: 8 pages
Proc. SPIE 3687, International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering, (5 May 1999); doi: 10.1117/12.347467
Show Author Affiliations
Alexei I. Borovkov, St. Petersburg State Technical Univ. (Russia)
Yuri Y. Misnik, St. Petersburg State Technical Univ. (Russia)


Published in SPIE Proceedings Vol. 3687:
International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering
Alexander I. Melker, Editor(s)

© SPIE. Terms of Use
Back to Top