Share Email Print
cover

Proceedings Paper

THz spectroscopy of the atmosphere
Author(s): Herbert M. Pickett
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

THz spectroscopy of the atmosphere has been driven by the need to make remote sensing measurements of OH. While the THz region can be used for sensitive detection on many atmospheric molecules, the THz region is the best region for measuring the diurnal behavior of stratospheric OH by remote sensing.THe IR region near 3 micrometers requires solar illumination. The three techniques for OH emission measurements in the THz region include Fourier Transform interferometry, Fabry-Perot interferometry, and heterodyne radiometry. The first two use cryogenic direct detectors while the last technique uses a local oscillator and a mixer to down convert the THz signal to GHz frequencies. All techniques have been used to measure stratospheric OH from balloon platforms. OH result from the Fabry-Perot based FILOS instrument will be given. Heterodyne measurement of OH at 2.5 THz has been selected to be a component of the microwave limb sounder on the Earth Observing System CHEM-1 polar satellite. The design of this instrument will be described. A balloon-based prototype heterodyne 2.5 THz radiometer had its first flight on 24 May 1998. Results from this flight will be presented.

Paper Details

Date Published: 29 April 1999
PDF: 5 pages
Proc. SPIE 3617, Terahertz Spectroscopy and Applications, (29 April 1999); doi: 10.1117/12.347109
Show Author Affiliations
Herbert M. Pickett, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 3617:
Terahertz Spectroscopy and Applications
Mark S. Sherwin, Editor(s)

© SPIE. Terms of Use
Back to Top