Share Email Print

Proceedings Paper

Control of antibody-antigen binding or dissociation by electric field
Author(s): Philip B. Oldham; Alexander N. Asanov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The development of a biosensor with adequate sensitivity generally requires a biospecific interaction with high binding affinity. The affinity constants for most antibody- antigen interactions are determined largely by the dissociation constants, kd, with little variation observed in rates of associated. additionally, surface immobilization typically results in a reduced kd. In this case, the sensor binds analyte kinetically irreversibly preventing response to changes in analytic concentration or reuse. Regeneration of the sensor surface is difficult, at best. On the other hand, a higher dissociation rate which would lend itself to a linear and reusable sensor, results in lower affinity and poor sensitivity. Consequently, most biosensors are disposable devices and quantitation is obtained using multiple single-use sensors. In this work, a new reusable biosensor platform which provides simultaneous fluorescence detection and electrochemical control of biospecific binding has been developed. Biotin was covalently attached to a transparent indium tin oxide electrode, which also served as an integral part of a total internal reflection fluorescence (TIRF) flow cell. TIRF was used to monitor biospecific interactions while electrochemical polarization was employed to control the interactions. Two possible mechanisms of the electric field effect involving interactions with induced and permanent dipoles of proteins will be discussed.

Paper Details

Date Published: 21 April 1999
PDF: 7 pages
Proc. SPIE 3603, Systems and Technologies for Clinical Diagnostics and Drug Discovery II, (21 April 1999); doi: 10.1117/12.346736
Show Author Affiliations
Philip B. Oldham, Mississippi State Univ. (United States)
Alexander N. Asanov, Mississippi State Univ. (United States)

Published in SPIE Proceedings Vol. 3603:
Systems and Technologies for Clinical Diagnostics and Drug Discovery II
Gerald E. Cohn; John C. Owicki, Editor(s)

© SPIE. Terms of Use
Back to Top