Share Email Print
cover

Proceedings Paper

Noise sources in fiber optic rotation sensors: system analysis
Author(s): Jagannath Nayak; P. Banerjee; Ananth Selvarajan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An ideal fiber optic rotation rate sensor is shot noise limited. In present day technology, the maximum power that can be received at the detector end of the sensor is of the order of 1 to 10 µw. This corresponds to a minimum detectable rotation rate of 0.1 deg/hr to 0.035 deg/hr for a sensing coil length of 500 meters and radius 10 cm, operated at 1.3 µm wavelength. However a practical rotation sensor is limited by thermal noise of the load resistance, back scattering noise in optical fiber, polarization induced noise, source intensity noise and noise in processing electronics. These noise sources cause long term offset at sensor output resulting in drift. We have analyzed and estimated the various noise sources with an objective to achieve optimum performance of a fiber optic rotation sensor. The noise equivalent rotation rate due to various sources has been calculated for different values of optical power, wavelength of operation, length of the fiber and detection bandwidth. Polarization filtering, coherence length of the optical sources, phase modulator amplitude and frequency stability were analyzed to yield optimal system performance. Other effects which cause drift in rotation sensor such as Faraday effect and Kerr effect have also been considered.

Paper Details

Date Published: 2 January 1998
PDF: 7 pages
Proc. SPIE 3211, International Conference on Fiber Optics and Photonics: Selected Papers from Photonics India '96, (2 January 1998); doi: 10.1117/12.345571
Show Author Affiliations
Jagannath Nayak, Research Center Imarat (India)
P. Banerjee, Research Center Imarat (India)
Ananth Selvarajan, Indian Institute of Science/Bangalore (India)


Published in SPIE Proceedings Vol. 3211:
International Conference on Fiber Optics and Photonics: Selected Papers from Photonics India '96
J. P. Raina; P. R. Vaya, Editor(s)

© SPIE. Terms of Use
Back to Top