Share Email Print
cover

Proceedings Paper

Performance limitations of InGaAs photodiodes
Author(s): Antoni Rogalski
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The carrier lifetimes in InxGa1-xAs (InGaAs) ternary alloys for radiative and Auger recombination are calculated for temperature 300 K in the short wavelength range 1.5 < (lambda) < 3.7 micrometers . Due to photon recycling, an order of magnitude enhancements in the radiative lifetimes over those obtained from the standard van Roosbroeck and Shockley expression, has been assumed. The possible Auger recombination mechanisms (CHCC, CHLH and CHSH processes) in direct-gap semiconductors are investigated. In n-type and p-type materials the carrier lifetimes are similar. It is clearly shown that in the range of low doping concentration, the carrier lifetime is determined by radiative recombination. For n-type material in the range of higher doping level, a competition between radiative and CHCC processes take place; instead for p-type materials the most effective channel of Auger mechanisms is the CHSH process. A special attention has been put on discussion of the carrier lifetimes in both types of In0.53Ga0.47As materials. Consequence of enhancement in the radiative lifetime leads to higher ultimate performance of photodiodes. The performance (RoA product) of heterostructure InGaAs photovoltaic devices are analyzed. Both the n-on-p (with p-type active region) as well as p-on- n (with n-type active region) are considered. Finally, theoretically predicted performance of InGaAs photodiodes are compared with experimental data reported by other authors.

Paper Details

Date Published: 8 April 1999
PDF: 10 pages
Proc. SPIE 3725, International Conference on Solid State Crystals '98: Epilayers and Heterostructures in Optoelectronics and Semiconductor Technology, (8 April 1999); doi: 10.1117/12.344747
Show Author Affiliations
Antoni Rogalski, Military Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 3725:
International Conference on Solid State Crystals '98: Epilayers and Heterostructures in Optoelectronics and Semiconductor Technology
Antoni Rogalski; Jaroslaw Rutkowski, Editor(s)

© SPIE. Terms of Use
Back to Top