Share Email Print
cover

Proceedings Paper

Liquid-phase epitaxial growth and characterization of In(Sb,Bi)
Author(s): Jolanta Raczynska; Antoni Rogalski; Jaroslaw Rutkowski; K. Fronc
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The growth of In(Bi,Sb) epilayers using liquid phase epitaxy has been discussed. The layers were grown on a (111)B side of InSb substrate using Bi-rich solution in horizontal slider type boat. The growth conditions for high-quality planar epitaxial layers were determined. Mirrorlike surface morphology was observed using a Nomarski differential interference contrast microscope. Hall and resistivity measurements performed at 300 K and 77 K showed an impurity contamination of the epitaxial layers. A capacitance-voltage technique has been established to determine the distribution of doping levels on the surface of InBiSb epilayers. The results indicate that the epitaxial layers of In(Sb,Bi) are n-type at room temperature, however, the time of baking solutions (before crystallization) determined type of conductivity and the concentration of free carriers in epilayers, at 77 K. For short-time-baked solution (from 5 to 20 hours), samples were p-type (carrier concentration approximately 3(DOT)1015 cm-3) when for long- time-baked solutions (40 - 100 hours), samples were n-type (carrier concentration approximately 5(DOT)1015 cm-3). We have observed that type of conductivity depends on surface morphology of the epilayers. The type of doping and the segregation coefficient k for tin for different solutions were established. For In rich solutions tin was an acceptor with k equals 0.0012 and for Bi-rich ones tin was a donor with k equals 0.0039 at 400 degree(s)C.

Paper Details

Date Published: 8 April 1999
PDF: 6 pages
Proc. SPIE 3725, International Conference on Solid State Crystals '98: Epilayers and Heterostructures in Optoelectronics and Semiconductor Technology, (8 April 1999); doi: 10.1117/12.344708
Show Author Affiliations
Jolanta Raczynska, Military Univ. of Technology (Poland)
Antoni Rogalski, Military Univ. of Technology (Poland)
Jaroslaw Rutkowski, Military Univ. of Technology (Poland)
K. Fronc, Institute of Physics (Poland)


Published in SPIE Proceedings Vol. 3725:
International Conference on Solid State Crystals '98: Epilayers and Heterostructures in Optoelectronics and Semiconductor Technology

© SPIE. Terms of Use
Back to Top