Share Email Print
cover

Proceedings Paper

New materials technology for latching electro-optic devices
Author(s): Patrick J. Hood; John C. Mastrangelo; Shaw H. Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents the current status of a new class of liquid crystal material being developed for latching electrooptic applications. This new material has the unique property of being electrooptic and fully latching. That is, in one state, the material has the properties of a conventional liquid crystal, capable of being aligned with either an electric or magnetic field; in its other state, it is an optical quality solid that maintains the molecular alignment set while in the fluid state. Experiments have shown that current materials can be switched on the order of milliseconds, as is the case with conventional nematic liquid crystals. In the solid state, the electric field can be removed with no change to the previously set optical properties because the molecular alignment is frozen in place, which should last for an extended period of time. In addition, the material exhibits broad temperature stability in the solid state, enabling devices to be developed that operate from cryogenic temperatures to 80 degrees C without the use of a temperature controller. This new material is ideally suited for applications where the size and mechanical robustness of an electrooptic device is desired, along with the latching capability of optomechanical devices. This materials technology alone will currently not meet high-speed switch requirements. However, this technology can be integrated with other state-of-the-art high-speed materials to provide a high-speed latching device. Devices currently under investigation using this materials include optical switches, optical attenuators and tunable filters.

Paper Details

Date Published: 13 April 1999
PDF: 8 pages
Proc. SPIE 3632, Optoelectronic Interconnects VI, (13 April 1999); doi: 10.1117/12.344610
Show Author Affiliations
Patrick J. Hood, Cornerstone Research Group, Inc. (United States)
John C. Mastrangelo, Univ. of Rochester (United States)
Shaw H. Chen, Univ. of Rochester (United States)


Published in SPIE Proceedings Vol. 3632:
Optoelectronic Interconnects VI
Julian P. G. Bristow; Suning Tang, Editor(s)

© SPIE. Terms of Use
Back to Top