Share Email Print

Proceedings Paper

Multicolor 4- to 20-um InP-based quantum well infrared photodetectors
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In order to tune the wavelength of lattice-matched QWIP detectors over the range from 4 - 20 microns, new designs are demonstrated for the first time which combine InGaAlAs and InGaAsP layers lattice-matched to InP and grown by gas-source molecular beam epitaxy. We demonstrate the first long- wavelength quantum well infrared photodetectors using the lattice-matched n-doped InGaAlAs/InP materials system. Samples with AlAs mole fractions of 0.0, 0.1, and 0.15 result in cutoff wavelengths of 8.5, 13.3, and 19.4 micrometer, respectively. A 45 degree facet coupled illumination responsivity of R equals 0.37 A/W and detectivity of D*(lambda ) equals 1 X 109 cm (root)Hz W-1 at T equals 77 K, for a cutoff wavelength (lambda) c equals 13.3 micrometer have been achieved. Based on the measured intersubband photoresponse wavelength, a null conduction band offset is expected for In0.52Ga0.21Al0.27As/InP heterojunctions. We also report quantum well infrared photodetector structures of In0.53Ga0.47As/Al0.48In0.52As grown on InP substrate with photoresponse at 4 micrometer suitable for mid-wavelength infrared detectors. These detectors exhibit a constant peak responsivity of 30 mA/W independent of temperature in the range from T equals 77 K to T equals 200 K. Combining these two materials, we report the first multispectral detectors that combine lattice-matched quantum wells of InGaAs/InAlAs and InGaAs/InP. Utilizing two contacts, a voltage tunable detector with (lambda) p equals 8 micrometer at a bias of V equals 5 V and (lambda) p equals 4 micrometer at V equals 10 V is demonstrated.

Paper Details

Date Published: 7 April 1999
PDF: 8 pages
Proc. SPIE 3629, Photodetectors: Materials and Devices IV, (7 April 1999); doi: 10.1117/12.344552
Show Author Affiliations
Christopher Louis Jelen, Northwestern Univ. (United States)
Steven Slivken, Northwestern Univ. (United States)
Gail J. Brown, Air Force Research Lab. (United States)
Manijeh Razeghi, Northwestern Univ. (United States)

Published in SPIE Proceedings Vol. 3629:
Photodetectors: Materials and Devices IV
Gail J. Brown; Manijeh Razeghi, Editor(s)

© SPIE. Terms of Use
Back to Top