Share Email Print
cover

Proceedings Paper

Engineering high-quality InxGa1-xP graded composition buffers on GaP for transparent substrate light-emitting diodes
Author(s): Andrew Y. Kim; Eugene A. Fitzgerald
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We present the development of high-quality InxGa1-xP graded buffers on GaP substrates (InxGa1-xP/GaP) for use in epitaxial transparent-substrate light-emitting diodes. The evolution of microstructure and dislocation dynamics of these materials has been explored as a function of growth conditions. The primarily limiting factor in obtaining high-quality InxGa1-xP/GaP is a new defect microstructure that we call branch defects. Branch defects pin dislocations and result in dislocation pileups that cause an escalation in threading dislocation density with continued grading.

Paper Details

Date Published: 14 April 1999
PDF: 9 pages
Proc. SPIE 3621, Light-Emitting Diodes: Research, Manufacturing, and Applications III, (14 April 1999); doi: 10.1117/12.344465
Show Author Affiliations
Andrew Y. Kim, Massachusetts Institute of Technology (United States)
Eugene A. Fitzgerald, Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 3621:
Light-Emitting Diodes: Research, Manufacturing, and Applications III
E. Fred Schubert; Ian T. Ferguson; H. Walter Yao, Editor(s)

© SPIE. Terms of Use
Back to Top